Cho hàm số y=f(x). Đồ thị hàm số y = f'(x) như hình bên dưới Hàm số g(x) = f(|x-3|) đồng biến trên các

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới

A.\(\left( {4;7} \right).\)

B.\(\left( { - 1;2} \right).\)

C.\(\left( {2;3} \right).\)

D.\(\left( { - \infty ; - 1} \right).\)

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Ta có \(y = g\left( x \right) = f\left( {\left| {x - 3} \right|} \right) \Rightarrow y' = \frac{{x - 3}}{{\left| {x - 3} \right|}}.f'\left( {\left| {x - 3} \right|} \right).\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}\left| {x - 3} \right| = - 1\left( L \right)\\\left| {x - 3} \right| = 1\\\left| {x - 3} \right| = 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2 \vee x = 4\\x = - 1 \vee x = 7\end{array} \right.\) (Hàm số không có đạo hàm tại \(x = 3).\)

BBT

Cho hàm số y=f(x). Đồ thị hàm số y = f'(x) như hình bên dưới Hàm số g(x) = f(|x-3|) đồng biến trên các (ảnh 2)

Vậy hàm số đồng biến trên khoảng \(\left( { - 1;2} \right).\)

Copyright © 2021 HOCTAP247