Cho số phức z thỏa (2 + i)z - 4(z-i) = - 8 + 19i. Mô đun của z bằng

Câu hỏi :

Cho số phức \(z\) thỏa \(\left( {2 + i} \right)z - 4\left( {\overline z - i} \right) = - 8 + 19i.\) Mô đun của \(z\) bằng 

A. 5

B. 18.

C.\(\sqrt 5 .\)

D. \(\sqrt {13} .\)

* Đáp án

D

* Hướng dẫn giải

Đáp án D.

Gọi \(z = a + bi\left( {a,b \in \mathbb{R}} \right).\) Khi đó:

\(\left( {2 + i} \right)z - 4\left( {\overline z - i} \right) = - 8 + 19i \Leftrightarrow \left( {2 + i} \right)\left( {a + bi} \right) - 4\left( {a - \left( {b + 1} \right)i} \right) = - 8 + 19i\)

\( \Leftrightarrow \left( {2a - b} \right) + \left( {a + 2b} \right)i - 4a + 4\left( {b + 1} \right)i = - 8 + 19i,\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l} - 2a - b = - 8\\a + 6b + 4 = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2a - b = - 8\\a + 6b = 15\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 2\end{array} \right..\) Vậy \(\left| z \right| = \sqrt {13} .\)

Copyright © 2021 HOCTAP247