A.\( - \frac{7}{4}.\)
B.\(\frac{1}{2}.\)
C.\( - \frac{1}{2}.\)
D.\(\frac{7}{4}.\)
D
Đáp án D.
Vì \(\frac{1}{{{x^2}}}\) là một nguyên hàm của hàm số \(y = f'\left( x \right)\ln x,\) nên \({\left( {\frac{1}{{{x^2}}}} \right)^'} = f'\left( x \right)\ln x \Leftrightarrow - \frac{2}{{{x^3}}} = f'\left( x \right)\ln x\)
Đặt \(\left\{ \begin{array}{l}u = f\left( x \right)\\dv = \frac{1}{x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = f'\left( x \right)dx\\v = \ln x\end{array} \right..\)
Khi đó: \(\int\limits_1^2 {\frac{{f\left( x \right)}}{x}dx} = f\left( x \right).\ln \left( x \right)\left| \begin{array}{l}2\\1\end{array} \right. - \int\limits_1^2 {f'\left( x \right)\ln xdx} = f\left( 2 \right).\ln \left( 2 \right) + \int\limits_1^2 {\frac{2}{{{x^3}}}dx} = \frac{1}{{\ln 2}}.\ln 2 - \frac{1}{{{x^2}}}\left| \begin{array}{l}2\\1\end{array} \right.\)
\( = 1 - \left( {\frac{1}{{{2^2}}} - 1} \right) = \frac{7}{4}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247