Cho hình nón (N) có đỉnh S bán kính đáy r = 1 và độ dài đường sinh l = 2 căn 2 . Mặt cầu đi qua S và đường tròn đáy của

Câu hỏi :

Cho hình nón \(\left( N \right)\) có đỉnh \(S,\) bán kính đáy \(r = 1\) và độ dài đường sinh \(l = 2\sqrt 2 .\) Mặt cầu đi qua \(S\) và đường tròn đáy của \(\left( N \right)\) có bán kính bằng

A.\(\frac{{4\sqrt 7 }}{7}.\)

B.\(\frac{{8\sqrt 7 }}{7}.\)

C.\(\sqrt 7 .\)

D. \(\frac{4}{3}.\)

* Đáp án

A

* Hướng dẫn giải

Đáp án A.

Cho hình nón (N) có đỉnh S bán kính đáy r = 1 và độ dài đường sinh l = 2 căn 2 . Mặt cầu đi qua S và đường tròn đáy của  (ảnh 1)

Gọi \(I\) là tâm của mặt cầu đi qua \(S\) và đường thẳng đáy của \(\left( N \right).\)

\(R\) là bán kính của mặt cầu cần tìm.

Theo giả thiết, ta có \(SO = \sqrt {{l^2} - {r^2}} = \sqrt 7 .\)

Trường hợp 1. \(IO = SO - R = \sqrt 7 - R.\)

Trong tam giác vuông \(IOB,\) ta có \(I{B^2} = I{O^2} + O{B^2} \Leftrightarrow {R^2} = {\left( {\sqrt 7 - R} \right)^2} + 1 \Leftrightarrow R = \frac{{4\sqrt 7 }}{7}.\)

Trường hợp 2. \(IO = R - SO = R - \sqrt 7 .\)

Trong tam giác vuông \(IOB,\) ta có \(I{B^2} = I{O^2} + O{B^2} \Leftrightarrow {R^2} = {\left( {R - \sqrt 7 } \right)^2} + 1 \Leftrightarrow R = \frac{{4\sqrt 7 }}{7}.\)

Copyright © 2021 HOCTAP247