Xét các số phức z thỏa mãn |iz + 3 - 2i)| = 4. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn số phức w = 2i z + 5 - 6i

Câu hỏi :

Xét các số phức \(z\) thỏa mãn \(\left| {i\overline z + 3 - 2i} \right| = 4.\) Trên mặt phẳng tọa độ \(Oxy,\) tập hợp điểm biểu diễn số phức \(w = 2i\overline z + 5 - 6i\) là một đường tròn có tâm \(I\left( {a;b} \right)\), bán kính \(R.\) Tính \(T = a + b + R\) 

A. 21.

B. 17.

C. 5.

D. \( - 1.\)

* Đáp án

C

* Hướng dẫn giải

Đáp án C.

Do \(z \in \mathbb{C} \Rightarrow z = x + yi\) với \(x,y \in \mathbb{R}.\)

Theo đề bài: \(w = 2i\overline z + 5 - 6i = 2\left( {i\overline z + 3 - 2i} \right) - \left( {1 + 2i} \right) \Leftrightarrow {\rm{w}} + \left( {1 + 2i} \right) = 2\left( {i\overline z + 3 - 2i} \right).\)

\( \Leftrightarrow {\rm{w + }}\left( {1 + 2i} \right) = 2\left( {i\overline z + 3 - 2i} \right) \Leftrightarrow \left| {{\rm{w + }}\left( {1 + 2i} \right)} \right| = 2\left| {\left( {i\overline z + 3 - 2i} \right)} \right| = 8.\)

Suy ra:

\(\left| {{\rm{w}} + \left( {1 + 2i} \right)} \right| = 8 \Leftrightarrow \left| {x + yi + 1 + 2i} \right| = 8 \Leftrightarrow \left| {x + 1 + \left( {y + 2} \right)i} \right| = 8 \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = {8^2}.\)

Vậy tập hợp điểm biểu diễn \[{\rm{w}}\] là một đường tròn có tâm \(I\left( { - 1; - 2} \right)\), bán kính \(R = 8\) nên ta có:

\(T = a + b + R = - 1 - 2 + 8 = 5.\)

Copyright © 2021 HOCTAP247