Cho tứ diện OABC có OA,OB,OC đôi một vuông góc và OB = OC = a căn 6 ,OA = a. Thể tích khối tứ diện đã cho bằng

Câu hỏi :

Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OB = OC = a\sqrt 6 ,OA = a.\) Thể tích khối tứ diện đã cho bằng

A.\(3{a^3}.\)

B. \(2{a^3}.\)

C.\(6{a^3}.\)

D. \({a^3}.\)

* Đáp án

D

* Hướng dẫn giải

Đáp án D.

Cho tứ diện OABC có OA,OB,OC đôi một vuông góc và OB = OC = a căn 6 ,OA = a. Thể tích khối tứ diện đã cho bằng (ảnh 1)

Vì \(OA,OB,OC\) đôi một vuông góc nên \(OA \bot \left( {OBC} \right)\) và \(\Delta OBC\) vuông tại \(O.\)

Nên thể tích khối chóp \(OABC\) là \(V = \frac{1}{6}.OA.OB.OC = \frac{1}{6}.a\sqrt 6 .a\sqrt 6 .a = {a^3}.\)

Copyright © 2021 HOCTAP247