Cho hàm số y = f(x) có đạo hàm f'(x) = x*(x-2)^2*(3x-2), mọi x thuộc R. Số điểm cực trị của hàm số y=f(x) bằng

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 2} \right)^2}\left( {3x - 2} \right),\forall x \in \mathbb{R}.\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) bằng 

A. 4.

B. 3.

C. 1.

D. 2.

* Đáp án

D

* Hướng dẫn giải

Đáp án D.

Ta có \(f'\left( x \right) = 0 \Leftrightarrow x{\left( {x - 2} \right)^2}\left( {3x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x = \frac{2}{3}\end{array} \right.\)

Trong đó \(x = 2\) là nghiệm kép \(x = 0,x = \frac{2}{3}\) là nghiệm đơn, nên dấu của đạo hàm \(f'\left( x \right) = x{\left( {x - 2} \right)^2}\left( {3x - 2} \right),\forall x \in \mathbb{R}\) bị đổi dấu 2 lần. Suy ra hàm số \(y = f'\left( x \right)\) có 2 điểm cực trị.

Copyright © 2021 HOCTAP247