Cho hình chóp S.ABCD có đáy là hình vuông và có mặt phẳng SAB vuông góc với mặt phẳng đáy, tam giác SAB

Câu hỏi :

Cho hình chóp \[S.ABCD\] có đáy là hình vuông và có mặt phẳng \[(SAB)\] vuông góc với mặt phẳng đáy, tam giác \[SAB\] là tam giác đều. Gọi I và E lần lượt là trung điểm của cạnh ABvà BC; Hlà hình chiếu vuông góc của Ilên cạnh SC. Khẳng định nào sau đây sai?

A.Mặt phẳng (SIC) vuông góc với mặt phẳng (SDE).

B.Mặt phẳng (SAI) vuông góc với mặt phẳng (SBC).

C.Góc giữa hai mặt phẳng (SAB) và (SIC) là góc BIC.

D.Góc giữa hai mặt phẳng (SIC) và (SBC) là góc giữa hai đường thẳng IHvà BH.

* Đáp án

D

* Hướng dẫn giải

Đáp án D.

Cho hình chóp S.ABCD có đáy là hình vuông và có mặt phẳng SAB vuông góc với mặt phẳng đáy, tam giác SAB (ảnh 1)

+ \(\left\{ \begin{array}{l}DE \bot IC\\DE \bot SI\end{array} \right. \Rightarrow DE \bot \left( {SIC} \right) \Rightarrow \left( {SIC} \right) \bot \left( {SDE} \right).\) Suy ra A đúng/

+ \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot AB\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAI} \right).\) Suy ra B đúng

+ \(DE \bot \left( {SCI} \right);BC \bot \left( {SAI} \right)\) nên \(\left( {\left( {SIC} \right),\left( {SAB} \right)} \right) = \left( {BC,DE} \right) = \angle DEC = \angle BIC.\)

Suy ra D sai.

Vậy D sai.

Copyright © 2021 HOCTAP247