A.\(d = \frac{{a\sqrt 3 }}{3}.\)
B. \(d = \frac{{a\sqrt 7 }}{7}.\)
C.\(d = \frac{{a\sqrt 2 }}{2}.\)
D.\(d = \frac{{a\sqrt 6 }}{6}.\)
B
Đáp án B.
Ta có \(AB = BC = a\) nên \(\Delta ABC\) vuông cân tại \(B.\)
Thể tích khối lăng trụ \(ABC.A'B'C'\) và \({V_{ABC.A'B'C'}} = AA'.{S_{\Delta ABC}} = a\sqrt 2 .\frac{1}{2}{a^2} = \frac{{{a^3}\sqrt 2 }}{2}\) (đvtt).
Gọi \(E\) là trung điểm \(BB'.\) Khi đó \(B'C//EM \Rightarrow B'C//\left( {AME} \right).\)
Vậy \(d\left( {AM,B'C} \right) = d\left( {\left( {AME} \right),B'C} \right) = d\left( {C,\left( {AME} \right)} \right) = d\left( {A,\left( {AME} \right)} \right).\)
Gọi \(h\) là khoảng cách từ \(A\) đến \(\left( {AME} \right).\)
Ta nhận thấy tứ diện \(B.AME\) có \(BE,BM,BA\) đôi một vuông góc.
Khi đó \(\frac{1}{{{h^2}}} = \frac{1}{{B{M^2}}} + \frac{1}{{B{E^2}}} + \frac{1}{{B{A^2}}} \Leftrightarrow \frac{1}{{{h^2}}} = \frac{4}{{{a^2}}} + \frac{2}{{{a^2}}} + \frac{1}{{{a^2}}} = \frac{7}{{{a^2}}} \Rightarrow h = \frac{{a\sqrt 7 }}{7}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247