Cho hai số thực x,y thay đổi thỏa mãn điều kiện x^2 + y^2 = 2. Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số

Câu hỏi :

Cho hai số thực \(x,y\) thay đổi thỏa mãn điều kiện \({x^2} + {y^2} = 2.\) Gọi \(M,m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy\). Giá trị của \(M + m\) bằng

A. \( - 4.\)


B.\( - \frac{1}{2}.\)



C.\( - 6.\)



D.\(1 - 4\sqrt 2 .\)


* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Ta có: \(P = 2\left( {{x^3} + {y^3}} \right) - 3xy = 2\left( {x + y} \right)\left( {{x^2} + {y^2} - xy} \right) - 3xy = 2\left( {x + y} \right)\left( {2 - xy} \right) - 3xy.\)

Đặt \(t = x + y \Rightarrow {t^2} = {x^2} + {y^2} + 2xy \Rightarrow {t^2} = 2 + 2xy \Leftrightarrow \frac{{{t^2} - 2}}{2} = xy.\)

Do \({\left( {x + y} \right)^2} \ge 4xy \Leftrightarrow {t^2} \ge 2\left( {{t^2} - 2} \right) \Leftrightarrow {t^2} \le 4 \Leftrightarrow - 2 \le t \le 2.\)

Suy ra \(P = 2t\left( {2 - \frac{{{t^2} - 2}}{2}} \right) - \frac{{3\left( {{t^2} - 2} \right)}}{2} = - {t^3} - \frac{3}{2}{t^2} + 6t + 3 = f\left( t \right)\) với \(t \in \left[ { - 2;2} \right].\)

Khi đó: \(f'\left( t \right) = - 3{t^2} - 3t + 6;f'\left( t \right) = 0 \Leftrightarrow - 3{t^2} - 3t + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right..\)

Suy ra \(f( - 2) = - 7,f(1) = \frac{{13}}{2},f(2) = 1 \Rightarrow M = \frac{{13}}{2};m = - 7 \Rightarrow M + m = - \frac{1}{2}.\)

Copyright © 2021 HOCTAP247