A. 10.
B.12.
C. 11.
C
Đáp án C.
Ta có \ (y = 3 {x ^ 2} - 6 \ left ({2m + 1} \ right) x + 12m + 5. \)
Hàm biến số trên khoảng \ (\ left ({2; + \ infty} \ right) \ Leftrightarrow y '\ ge 0, \ forall x \ in \ left ({2; + \ infty} \ right). \)
\ (\ Leftrightarrow 3 {x ^ 2} - 6 \ left ({2m + 1} \ right) x + 2m + 5 \ ge 0, \ forall x \ in \ left ({2; + \ infty} \ right) . \ Leftrightarrow \ frac {{3 {x ^ 2} - 6x + 5}} {{x - 1}} \ ge 12m, \ forall x \ in \ left ({2; + \ infty} \ right). \ )
Xét \(f\left( x \right) = \frac{{3{x^2} - 6x + 5}}{{x - 1}}\) trên \(\left( {2; + \infty } \right) \Rightarrow f'\left( x \right) = \frac{{3{x^2} - 6x + 1}}{{{{\left( {x - 1} \right)}^2}}}.\) Ta có BBT:
Vậy \(12m \le 5 \Leftrightarrow m \le \frac{5}{{12}} \Rightarrow S = \left\{ { - 10; - 9; - 8;...;0} \right\}.\) Do đó số phần tử của \(S\) bằng 11.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247