Gọi m là tham số thực để giá trị lớn nhất của hàm số y = |x^2 + 2x + m - 4| trên đoạn [-2;1] đạt giá trị nhỏ nhất. Giá trị của m là

Câu hỏi :

Gọi \(m\) là tham số thực để giá trị lớn nhất của hàm số \(y = \left| {{x^2} + 2x + m - 4} \right|\) trên đoạn \(\left[ { - 2;1} \right]\) đạt giá trị nhỏ nhất. Giá trị của \(m\) là 

A.1.

B.3.

C.5.

D.4.

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Xét hàm số \(f\left( x \right) = {x^2} + 2x + m - 4\) trên đoạn \(\left[ { - 2;1} \right].\)

Ta có: \(f'\left( x \right) = 2x + 2 = 0 \Leftrightarrow 2x = - 2 \Leftrightarrow x = - 1\)

\(y\left( { - 2} \right) = \left| {m - 4} \right|;y\left( { - 1} \right) = \left| {m - 5} \right|;y\left( 1 \right) = \left| {m - 1} \right|\)

Với \(\forall m\) ta luôn có: \(m - 1 >m - 4 >m - 5\) nên \(\mathop {Max}\limits_{\left[ { - 2;1} \right]} y = Max\left\{ {\left| {m - 1} \right|;\left| {m - 5} \right|} \right\}\)

Mà \(\left| {m - 1} \right| \ge \left| {m - 5} \right| \Leftrightarrow {\left( {m - 1} \right)^2} \ge {\left( {m - 5} \right)^2} \Leftrightarrow {m^2} - 2m + 1 \ge {m^2} - 10m + 25 \Leftrightarrow 8m \ge 24 \Leftrightarrow m \ge 3\)

Do đó: \(\mathop {Max}\limits_{\left[ { - 2;1} \right]} y = Max\left\{ {\left| {m - 1} \right|;\left| {m - 5} \right|} \right\} = \left\{ \begin{array}{l}\left| {m - 1} \right|{\rm{ }}khi{\rm{ }}m \ge 3\\\left| {m - 5} \right|{\rm{ }}khi{\rm{ }}m \le 3\end{array} \right.\)

Xét hàm số \(g\left( m \right) = \left\{ \begin{array}{l}\left| {m - 1} \right|{\rm{ }}khi{\rm{ }}m \ge 3\\\left| {m - 5} \right|{\rm{ }}khi{\rm{ }}m \le 3\end{array} \right. \Rightarrow g\left( m \right) = \left\{ \begin{array}{l}m - 1{\rm{ }}khi{\rm{ }}m \ge 3\\5 - m{\rm{ }}khi{\rm{ }}m \le 3\end{array} \right.\)

Đồ thị hàm số như sau:

Gọi m là tham số thực để giá trị lớn nhất của hàm số y = |x^2 + 2x + m - 4| trên đoạn [-2;1] đạt giá trị nhỏ nhất. Giá trị của m là  (ảnh 1)

Từ đồ thị ta thấy \(Min\left[ {g\left( m \right)} \right] = 2\) khi \(m = 3\)

Vậy khi \(m = 3\) thì giá trị lớn nhất của hàm số \(y = \left| {{x^2} + 2x + m - 4} \right|\) trên đoạn \(\left[ { - 2;1} \right]\) đạt giá trị

Copyright © 2021 HOCTAP247