Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy. Biết thể tích khối chóp S.ABCD

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy. Biết thể tích khối chóp \[S.ABCD\] bằng \(\frac{{{a^3}\sqrt 3 }}{3}.\) Khoảng cách từ \(D\) đến mặt phẳng \(\left( {SBC} \right)\) bằng

A. \(\frac{a}{2}.\)


B.\(\frac{{a\sqrt 3 }}{2}.\)



C.\(\frac{{a\sqrt 2 }}{2}.\)



D.\(\frac{{2a\sqrt {39} }}{{13}}.\)


* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy. Biết thể tích khối chóp S.ABCD (ảnh 1)

Ta có: \({V_{S.ABCD}} = \frac{1}{3}SA.A{B^2} \Leftrightarrow SA = \frac{{3{V_{S.ABCD}}}}{{A{B^2}}} = a\sqrt 3 .\)

Kẻ \(AM \bot SB;\left( {M \in SB} \right) \Rightarrow AM \bot \left( {SBC} \right).\)

\(d\left( {D,\left( {SBC} \right)} \right) = d\left( {A;\left( {SBC} \right)} \right) = AM.\)

Xét tam giác \(SAB\) vuông tại \(A\) có: \(AM = \frac{{SA.AB}}{{\sqrt {A{B^2} + S{A^2}} }} = \frac{{a\sqrt 3 .a}}{{2a}} = \frac{{a\sqrt 3 }}{2}.\)

\( \Rightarrow d\left( {D;\left( {SBC} \right)} \right) = \frac{{a\sqrt 3 }}{2}.\)

Copyright © 2021 HOCTAP247