A. 7.
B. 5.
C. 6.
D. 8.
A
Đáp án A.
Phương trình: \(\left| {\sin x - \cos x} \right| + 4\sin 2x = m\)
Đặt \(t = \left| {\sin x - \cos x} \right| = \left| {\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)} \right|\) (Điều kiện: \(0 \le t \le \sqrt 2 )\)
\( \Rightarrow {t^2} = {\left( {\sin x - \cos x} \right)^2} = 1 - 2\sin x\cos x \Rightarrow \sin 2x = 1 - {t^2}\)
\( \Rightarrow \) Phương trình: \(t + 4\left( {1 - {t^2}} \right) = m \Leftrightarrow - 4{t^2} + t + 4 = m\)
Xét hàm số \(y = f\left( t \right) = - 4{t^2} + t + 4\) trên đoạn \(\left[ {0;\sqrt 2 } \right]\)
\(y' = f'\left( t \right) = - 8t + 1 = 0 \Leftrightarrow - 8t = - 1 \Leftrightarrow t = \frac{1}{8}.\)
Bảng biến thiên:
\(f\left( 0 \right) = 4;f\left( {\frac{1}{8}} \right) = \frac{{65}}{{16}};f\left( {\sqrt 2 } \right) = \sqrt 2 - 4 \Rightarrow \mathop {Min}\limits_{\left[ {0;\sqrt 2 } \right]} f\left( t \right) = \sqrt 2 - 4;\mathop {Max}\limits_{\left[ {0;\sqrt 2 } \right]} f\left( t \right) = \frac{{65}}{{16}}\)
\( \Rightarrow \sqrt 2 - 4 \le m \le \frac{{65}}{{16}},\) mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}.\)
Vậy có 7 giá trị nguyên của \(m\) để phương trình đã cho có nghiệm thực.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247