Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O là tâm của hình vuông ABCD. S là điểm đối xứng với O

Câu hỏi :

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Gọi \(O\) là tâm của hình vuông \(ABCD.\)\(S\) là điểm đối xứng với \(O\) qua \(CD'.\) Thể tích của khối đa diện \(ABCDSA'B'C'D'\) bằng

A.\(\frac{5}{4}{a^3}.\)

B.\(\frac{7}{6}{a^3}.\)

C.\(\frac{7}{5}{a^3}.\)

D. \(\frac{{13}}{{12}}{a^3}.\)

* Đáp án

D

* Hướng dẫn giải

Đáp án D.

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O là tâm của hình vuông ABCD. S là điểm đối xứng với O (ảnh 1)

Ta có \(O\) và \(S\) đối xứng nhau qua đường thẳng \(CD',\) suy ra:

\(d\left( {S;\left( {CDD'C'} \right)} \right) = d\left( {O;\left( {CDD'C'} \right)} \right)\)

\( \Rightarrow {V_{S.CDD'C'}} = {V_{O.CDD'C'}} = \frac{1}{3}DD'.{S_{\Delta OCD}} = \frac{1}{3}DD'.\frac{1}{4}{S_{ABCD}} = \frac{1}{{12}}DD'.{S_{ABCD}} = \frac{1}{{12}}{V_{ABCD.A'B'C'D'}}\)

Vậy \({V_{ABCDSA'B'C'D'}} = {V_{ABCD.A'B'C'D'}} + {V_{S.CDD'C'}} = {V_{ABCD.A'B'C'D'}} + \frac{1}{{12}}{V_{ABCD.A'B'C'D'}}\)

\( = \frac{{13}}{{12}}{V_{ABCD.A'B'C'D'}} = \frac{{13}}{{12}}{a^3}.\)

Copyright © 2021 HOCTAP247