Cho hàm số y=f(x) có bảng biến thiên như sau: Biết f(0) = 0, số nghiệm thuộc đoạn [-pi/6;7pi/6] của phương trình

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

A. 4.

B. 3.

C. 2.

D. 5.

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Cho hàm số y=f(x) có bảng biến thiên như sau: Biết f(0) = 0, số nghiệm thuộc đoạn [-pi/6;7pi/6] của phương trình (ảnh 2)

Đặt

\(t = \sqrt 3 \sin x + \cos x + 2\sin \left( {x + \frac{\pi }{6}} \right).\)

Với \(x \in \left[ { - \frac{\pi }{6};\frac{{7\pi }}{3}} \right] \Rightarrow x + \frac{\pi }{6} \in \left[ {0;2\pi + \frac{\pi }{2}} \right] \Rightarrow t \in \left[ { - 2;2} \right] \Rightarrow f\left( t \right) \in \left[ { - 2;2} \right].\)

Phương trình có dạng \(f\left( {f\left( t \right)} \right) = 1 \Leftrightarrow \left[ \begin{array}{l}f\left( t \right) = {\alpha _1}\left( {{\alpha _1} < - 2} \right)\\f\left( t \right) = \alpha \left( { - 2 < \alpha < 0} \right)\\f\left( t \right) = {\alpha _2}\left( {{\alpha _2} >2} \right)\end{array} \right.\)</>

Từ bảng biến thiên ta có phương trình \(f\left( t \right) = \alpha \) có nghiệm \(t = {t_0}\left( {0 < {t_0} < 2} \right).\)

Khi đó phương trình \(\sin \left( {x + \frac{\pi }{6}} \right) = \frac{{{t_0}}}{2}\) cho ba nghiệm thuộc đoạn \(\left[ { - \frac{\pi }{6};\frac{{7\pi }}{3}} \right].\)

Copyright © 2021 HOCTAP247