Cho hàm số y = f(x) liên tục và có đạo hàm f'(x) = (2x-1)^4*(x+2)*(3-3x), số điểm cực trị của hàm số là

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) liên tục và có đạo hàm f'x=2x14x+233x, số điểm cực trị của hàm số là

A.1.

B.2.

C.3.

D.0.

* Đáp án

* Hướng dẫn giải

Đáp ánB.

Ta có: \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2x - 1 = 0\\x + 2 = 0\\3 - 3x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0,5\\x = - 2\\x = 1\end{array} \right.\)

Bảng biến thiên:

Cho hàm số y = f(x) liên tục và có đạo hàm f'(x) = (2x-1)^4*(x+2)*(3-3x), số điểm cực trị của hàm số là (ảnh 1)

Vậy hàm số có 2 điểm cực trị.

Copyright © 2021 HOCTAP247