Cho lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 60^0 ;AB = a. Khi đó thể tích

Câu hỏi :

Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có góc giữa hai mặt phẳng \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \({60^0};AB = a.\) Khi đó thể tích của khối đa diện \(ABCC'B'\) bằng

A. \({a^3}\sqrt 3 .\)


B.\(\frac{{3\sqrt 3 }}{4}{a^3}.\)



C.\(\frac{{{a^3}\sqrt 3 }}{4}.\)



D.\(\frac{{3{a^3}}}{4}.\)


* Đáp án

C

* Hướng dẫn giải

Đáp án C.

Cho lăng trụ tam giác đều ABC.A'B'C' có góc giữa hai mặt phẳng (A'BC) và (ABC) bằng 60^0 ;AB = a. Khi đó thể tích (ảnh 1)

Gọi \(M\) là trung điểm của \(BC,\Delta ABC\) đều nên \(AM \bot BC\).

Tam giác \(A'BC\) đều nên \(A'M \bot BC \Rightarrow BC \bot \left( {A'AM} \right)\).

Ta có \(\left\{ \begin{array}{l}\left( {A'AM} \right) \cap \left( {A'BC} \right) = A'M\\\left( {A'AM} \right) \cap \left( {ABC} \right) = AM\end{array} \right. \Rightarrow \widehat {\left( {A'BC} \right);\left( {ABC} \right)} = \widehat {\left( {A'M;AM} \right)} = \widehat {A'MA}\)

Xét \(\Delta AA'M\) vuông tại \(A,\) có \(\tan \widehat {A'MA} = \frac{{AA'}}{{AM}} \Rightarrow AA' = \tan {60^0}.\frac{{a\sqrt 3 }}{2} = \frac{{3a}}{2}.\)

Tứ giác \(BCC'B'\) là hình chữ nhật có diện tích \({S_{BCC'B'}} = BB'.BC = \frac{{3{a^2}}}{2}.\)

Mà \(\left\{ \begin{array}{l}AM \bot BC\\AM \bot BB'\end{array} \right. \Rightarrow AM \bot \left( {BCC'B'} \right) \Rightarrow d\left( {A;\left( {BCC'B'} \right)} \right) = AM = \frac{{a\sqrt 3 }}{2}.\)

Thể tích khối chóp \(ABCC'B'\) là \({V_{ABCC'B'}} = \frac{1}{3}.d\left( {A;\left( {BCC'B'} \right)} \right).{S_{BCC'B'}} = \frac{{{a^3}\sqrt 3 }}{4}.\)

Vậy diện tích thiết diện bằng \(\frac{{8\sqrt {11} }}{3}\) (đvtt)

Copyright © 2021 HOCTAP247