Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình - 2x^3 + 6x^2 - 16x + 10 + m + căn bậc 3(-x^3-3x+m) = 0

Câu hỏi :

Gọi \(S\) là tập hợp tất cả các giá trị nguyên của tham số \(m\) để phương trình \( - 2{x^3} + 6{x^2} - 16x + 10 + m + \sqrt[3]{{ - {x^3} - 3x + m}} = 0\) có nghiệm \(x \in \left[ { - 1;2} \right].\) Tính tổng tất cả các phần tử của \(S.\) 

A.\( - 368.\)

B.\(46.\)

C.\( - 391\).

D. \( - 782.\)

* Đáp án

C

* Hướng dẫn giải

Đáp án C.

Ta có: \( - 2{x^3} + 6{x^2} - 16x + 10 + m + \sqrt[3]{{ - {x^3} - 3x + m}} = 0\)

\( \Leftrightarrow - {x^3} - 3x + m + \sqrt[3]{{ - {x^3} - 3x + m}} = {x^3} - 6{x^2} + 13x - 10\)

\( \Leftrightarrow - {x^3} - 3x + m + \sqrt[3]{{ - {x^3} - 3x + m}} = {\left( {x - 2} \right)^3} + x - 2\)

\( \Leftrightarrow {\left( {\sqrt[3]{{ - {x^3} - 3x + m}}} \right)^3} + \sqrt[3]{{ - {x^3} - 3x + m}} = {\left( {x - 2} \right)^3} + \left( {x - 2} \right){\rm{ }}\left( * \right)\)

Xét hàm số \(y = f\left( t \right) = {t^3} + t\) có \(f'\left( t \right) = 3{t^2} + 1 >0,\forall t \in \mathbb{R}\) nên hàm số \(y = f\left( t \right)\) đồng biến trên \(\mathbb{R}.\) Do đó phương trình \(\left( * \right) \Leftrightarrow \sqrt[3]{{ - {x^3} - 3x + m}} = x - 2 \Leftrightarrow - {x^3} - 3x + m = {\left( {x - 2} \right)^3}\)

\( \Leftrightarrow - {x^3} - 3x + m = {x^3} - 6{x^2} + 12x - 8 \Leftrightarrow 2{x^3} - 6{x^2} + 15x - 8 = m\) (1)

Phương trình \( - 2{x^3} + 6{x^2} - 16x + 10 + m + \sqrt[3]{{ - {x^3} - 3x + m}} = 0\) có nghiệm \(x \in \left[ { - 1;2} \right]\) khi và chỉ khi phương trình \(\left( 1 \right)\) có nghiệm \(x \in \left[ { - 1;2} \right].\)

Xét hàm số \(y = 2{x^3} - 6{x^2} + 15x - 8\) có \(y' = 6{x^2} - 12x + 15 >0,\forall x \in \mathbb{R}\) nên hàm số này đồng biến trên \(\mathbb{R}.\)

Ta có: \(y\left( { - 1} \right) = - 31\) và \(y\left( 2 \right) = 14.\)

Do đó phương trình \(\left( 1 \right)\) có nghiệm \(x \in \left[ { - 1;2} \right]\) khi và chỉ khi \( - 31 \le m \le 14.\)

Kết hợp điều kiện \(m \in \mathbb{Z}\) ta có \(S = \left\{ { - 31; - 30; - 29;...;13;14} \right\}.\)

Vậy tổng tất cả các phần tử của tập \(S\) là \( - 391.\)

Copyright © 2021 HOCTAP247