Cho khối chóp tam giác đều có cạnh đáy bằng a và cạnh bên tạo với đáy một góc 60^0. Thể tích của khối chóp đó bằng

Câu hỏi :

Cho khối chóp tam giác đều có cạnh đáy bằng \(a\) và cạnh bên tạo với đáy một góc \({60^0}\). Thể tích của khối chóp đó bằng

A. \(\frac{{{a^3}\sqrt 3 }}{{12}}\).

B. \(\frac{{{a^3}\sqrt 3 }}{6}\).

C. \(\frac{{{a^3}\sqrt 3 }}{{36}}\).

D. \(\frac{{{a^3}\sqrt 3 }}{4}\).

* Đáp án

A

* Hướng dẫn giải

Cho khối chóp tam giác đều có cạnh đáy bằng a và cạnh bên tạo với đáy một góc 60^0. Thể tích của khối chóp đó bằng (ảnh 1)

Gọi \(H\) là trung điểm \(BC\) và \(G\) là trọng tâm tam giác \(ABC.\) Ta có \(SG \bot \left( {ABC} \right).\)

Tam giác \(ABC\) đều cạnh \(a\) nên \({S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}\) và \(AG = \frac{2}{3}AH = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}.\)

\(\widehat {\left( {SA,\left( {ABC} \right)} \right)} = \widehat {SAG} = {60^0}.\)

Trong tam giác vuông \(SGA,\) ta có \(SG = AG.\tan \widehat {SAG} = \frac{{a\sqrt 3 }}{3}.\sqrt 3 = a.\)

Vậy \({V_{S.ABC}} = \frac{1}{3}.SG.{S_{\Delta ABC}} = \frac{1}{3}.a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{{12}}.\)

Đáp án A

Copyright © 2021 HOCTAP247