Cho lăng trụ đứng ABC.A'B'C'có đáy là tam giác đều cạnh . Mặt phẳng AB'C' tạo với mặt phẳng ABC một góc

Câu hỏi :

Cho lăng trụ đứng \(ABC.A'B'C'\)có đáy là tam giác đều cạnh a. Mặt phẳng \(\left( {AB'C'} \right)\) tạo với mặt phẳng \(\left( {ABC} \right)\)một góc 60^0.Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng

A. \[\frac{{{a^3}\sqrt 3 }}{2}\]

B. \[\frac{{3{a^3}\sqrt 3 }}{4}\]

C. \[\frac{{{a^3}\sqrt 3 }}{8}\]

D. \[\frac{{3{a^3}\sqrt 3 }}{8}\]

* Đáp án

* Hướng dẫn giải

Cho lăng trụ đứng ABC.A'B'C'có đáy là tam giác đều cạnh . Mặt phẳng AB'C' tạo với mặt phẳng ABC một góc (ảnh 1)

Gọi \(H,H'\) lần lượt là trung điểm của \(BC,B'C'.\)

Do lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\) nên \(AH = \frac{{a\sqrt 3 }}{2}\) và \({S_{\Delta A'B'C'}} = \frac{{{a^2}\sqrt 3 }}{4}\)

Ta có: \(\left( {\left( {AB'C'} \right),\left( {ABC} \right)} \right) = \left( {AH,AH'} \right) = \angle H'AH = {60^0}.\)

Xét tam giác \(H'HA\) vuông tại \(H\) có \(\tan {60^0} = \frac{{H'H}}{{AH}} \Leftrightarrow H'H = AH.\tan {60^0} = \frac{{a\sqrt 3 }}{2}.\sqrt 3 = \frac{3}{2}a\)

Mà \(A'A = H'H\) nên \(A'A = \frac{3}{2}a.\)

Vậy \({V_{ABC.A'B'C'}} = A'A.{S_{\Delta A'B'C'}} = \frac{3}{2}a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{8}{a^3}.\)

Copyright © 2021 HOCTAP247