A. \[\frac{{{a^3}\sqrt 3 }}{2}\]
B. \[\frac{{3{a^3}\sqrt 3 }}{4}\]
C. \[\frac{{{a^3}\sqrt 3 }}{8}\]
D. \[\frac{{3{a^3}\sqrt 3 }}{8}\]
Gọi \(H,H'\) lần lượt là trung điểm của \(BC,B'C'.\)
Do lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\) nên \(AH = \frac{{a\sqrt 3 }}{2}\) và \({S_{\Delta A'B'C'}} = \frac{{{a^2}\sqrt 3 }}{4}\)
Ta có: \(\left( {\left( {AB'C'} \right),\left( {ABC} \right)} \right) = \left( {AH,AH'} \right) = \angle H'AH = {60^0}.\)
Xét tam giác \(H'HA\) vuông tại \(H\) có \(\tan {60^0} = \frac{{H'H}}{{AH}} \Leftrightarrow H'H = AH.\tan {60^0} = \frac{{a\sqrt 3 }}{2}.\sqrt 3 = \frac{3}{2}a\)
Mà \(A'A = H'H\) nên \(A'A = \frac{3}{2}a.\)
Vậy \({V_{ABC.A'B'C'}} = A'A.{S_{\Delta A'B'C'}} = \frac{3}{2}a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{8}{a^3}.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247