Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Cạnh bên SA vuông góc với mặt phẳng ABCD

Câu hỏi :

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh bằng \(1\). Cạnh bên \[SA\] vuông góc với mặt phẳng \[\left( {ABCD} \right)\] và \[SC = \sqrt 5 \]. Thể tích \(V\)của khối chóp \[S.ABCD\] là

A. \[V = \frac{{\sqrt 3 }}{3}\].

B. \[V = \frac{{\sqrt 3 }}{6}\].

C. \[V = \sqrt 3 \].

D. \[V = \frac{{\sqrt {15} }}{3}\].

* Đáp án

A

* Hướng dẫn giải

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Cạnh bên SA vuông góc với mặt phẳng ABCD (ảnh 1)

Vì \(ABCD\) là hình vuông cạnh bằng 1 nên có diện tích \({S_{ABCD}} = 1.\)

Xét tam giác \(ABC\) vuông tại \(B\) ta có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {1 + 1} = \sqrt 2 .\)

Xét tam giác \(SAC\) vuông tại \(A\) ta có \(SA = \sqrt {S{C^2} - A{C^2}} = \sqrt {5 - 2} = \sqrt 3 .\)

Thể tích khối chóp \(S.ABCD\) là \(V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{1}{3}.\sqrt 3 .1 = \frac{{\sqrt 3 }}{3}.\)

Đáp án A

Copyright © 2021 HOCTAP247