A. \[\frac{{{a^3}\sqrt 2 }}{2}\]
B. \[\frac{{{a^3}\sqrt 3 }}{3}\]
C. \[{a^3}\sqrt 3 \]
D. \[{a^3}\sqrt 2 \]
D
Tam giác \(ABC\) là tam giác vuông cân tại \(B.\) Gọi \(BA = BC = b.\)
Áp dụng định lí Pitago vào trong tam giác vuông \(ABC\) ta có \(\sqrt {B{A^2} + B{C^2}} = AC \Leftrightarrow b\sqrt 2 = 2a \Leftrightarrow b = a\sqrt 2 .\)
Diện tích đáy là \({S_{ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}{b^2} = \frac{1}{2}{\left( {a\sqrt 2 } \right)^2} = {a^2}.\)
Ta có \(\left\{ \begin{array}{l}\left( {A'BC} \right) \cap \left( {ABC} \right) = BC\\BC \bot \left( {AA'B} \right)\\\left( {AA'B} \right) \cap \left( {ABC} \right) = AB\\\left( {AA'B} \right) \cap \left( {A'BC} \right) = A'B\end{array} \right..\) Do đó góc giữa \(\left( {A'BC} \right)\) và đáy \(\left( {ABC} \right)\) bằng góc giữa \(AB\) và \(A'B\) và bằng góc \(\widehat {ABA'},\) theo giả thiết, ta có \(\widehat {ABA'} = {45^0}.\)
Tam giác \(AA'B\) vuông cân tại \(A\) nên \(AA' = AB = a\sqrt 2 .\)
Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng \(V = AA'.{S_{ABC}} = a\sqrt 2 .{a^2} = {a^3}\sqrt 2 .\)
Đáp án D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247