Cho hàm số f(x) = x^3 - 3x +m ( với m là tham số thực). Biết max(f(x)) = 5 . Giá trị nhỏ nhất của hàm số y = f(x) trên

Câu hỏi :

Cho hàm số \[f\left( x \right) = {x^3} - 3x + m\] ( với m là tham số thực). Biết \[\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = 5\] . Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên \(\left( {0; + \infty } \right)\)là

A. \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 1.\)

B. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 2.\]

C. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = 3.\]

D. \[\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = - 1.\]

* Đáp án

A

* Hướng dẫn giải

Ta có \(f'\left( x \right) = 3{x^2} - 3 = 0 \Rightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\)

BBT

Cho hàm số f(x) = x^3 - 3x +m ( với m là tham số thực). Biết max(f(x)) = 5 . Giá trị nhỏ nhất của hàm số y = f(x) trên (ảnh 1)

Vậy \(\mathop {\max }\limits_{\left( { - \infty ;0} \right)} f\left( x \right) = f\left( { - 1} \right) \Rightarrow f\left( { - 1} \right) = 5 \Leftrightarrow m + 2 = 5 \Leftrightarrow m = 3.\)

\(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( 1 \right) = m - 2 = 3 - 2 = 1.\)

Đáp án A

Copyright © 2021 HOCTAP247