A. \[\left[ { - 1;3} \right]\].
B. \(\left( { - 1;3} \right]\).
C. \(\left( { - 1;3} \right)\).
D. \(\left( { - 1; + \infty } \right)\).
B
ĐKXĐ: \(x \ge - 1.\)
Vì \(1 + \sqrt {x + 1} >0\) với \(\forall x \ge - 1\) nên để đồ thị hàm số có đún hai tiệm cận đứng thì phương trình \({x^2} - 2x = m\left( 1 \right)\) phải có hai nghiệm phân biệt lớn hơn -1.
Xét hàm số \(f\left( x \right) = {x^2} - 2x\) trên \(\left[ { - 1; + \infty } \right).\)
\(f'\left( x \right) = 2x - 2 = 0 \Rightarrow x = 1.\)
BBT
Phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt lớn hơn -1 khi \(f\left( 1 \right) < m \le f\left( { - 1} \right) \Leftrightarrow - 1 < m \le 3.\)
Đáp án B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247