A. 0.
B. 1.
C. 2.
D. 3.
C
\(y = {x^3} + \frac{1}{2}\left( {{m^2} - 1} \right){x^2} + 1 - m\)
\(y' = 3{x^2} + \left( {{m^2} - 1} \right)x\)
Hàm số có điểm cực đại là \(x = - 1\)
\(y = {x^3} + \frac{1}{2}\left( {{m^2} - 1} \right){x^2} + 1 - m\)\( \Rightarrow 3 + \left( {{m^2} - 1} \right)\left( { - 1} \right) = 0 \Rightarrow {m^2} = 4 \Rightarrow \left[ \begin{array}{l}m = 2\\m = - 2\end{array} \right.\)
Lúc này nên hàm số đạt cực đại tại \(x = - 1.\)
Vậy có 2 giá trị \(m\) thỏa yêu cầu bài toán.
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247