Cho hàm số y = f(x) = ax^4 + bx^2 + c có đồ thị như hình vẽ bên dưới Số điểm cực trị của hàm số g(x) = f(x^3 + f(x)) là

Câu hỏi :

Cho hàm số \(y = f(x) = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số \(g(x) = f({x^3} + f(x))\) là

Cho hàm số y = f(x) = ax^4 + bx^2 + c có đồ thị như hình vẽ bên dưới  Số điểm cực trị của hàm số g(x) = f(x^3 + f(x)) là (ảnh 1)

A.11

B.9

C.8

D.10

* Đáp án

B

* Hướng dẫn giải

Đáp án B.

Từ đồ thị ta thấy hàm số trên có phương trình là \(y = {x^4} - 2{x^2}.\) Vậy ta có:

\(f\left( x \right) = {x^4} - 2{x^2}\) và \(f'\left( x \right) = 4{x^3} - 4x\)

\(g'\left( x \right) = \left( {f\left( {{x^3} + f\left( x \right)} \right)} \right)' = \left( {{x^3} + f\left( x \right)} \right)'f'\left( {{x^3} + f\left( x \right)} \right) = \left( {3{x^2} + f'\left( x \right)} \right)f\left( {{x^3} + f\left( x \right)} \right).\)

Suy ra \(g'\left( x \right) = \left( {3{x^2} + f'\left( x \right)} \right)f'\left( {{x^3} + f\left( x \right)} \right) = \left( {3{x^2} + 4{x^3} - 4x} \right)f'\left( {{x^3} + {x^4} - 2{x^2}} \right).\)

\(g'\left( x \right) = 0 \Leftrightarrow \left( {3{x^2} + 4{x^3} - 4x} \right)f'\left( {{x^3} + {x^4} - 2{x^2}} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}4{x^3} + 3{x^2} - 4x = 0\\{x^4} + {x^3} - 2{x^2} = 1\\{x^4} + {x^3} - 2{x^2} = - 1\\{x^4} + {x^3} - 2{x^2} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4{x^3} + 3{x^2} - 4x = 0\\{x^4} + {x^3} - 2{x^2} - 1 = 0\\{x^4} + {x^3} - 2{x^2} + 1 = 0\\{x^4} + {x^3} - 2{x^2} = 0\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = 0\\x \approx 0,6930\\x \approx - 1,4430\\x \approx 1,21195\\x \approx - 2,0754\\x \approx - 0,6710\\x \approx - 1,9051\\x = 1\\x = - 2\end{array} \right.\)

Phương trình \(g'\left( x \right) = 0\) có đúng 8 nghiệm đơn và 1 nghiệm bội lẻ \(x = 0.\)

Vậy hàm số \(g\left( x \right)\) có 9 điểm cực trị

Copyright © 2021 HOCTAP247