Hàm số \(f(x) = a{x^4} + b{x^3} + c{x^2} + dx + e\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(f\left( {f\left( x \right)} \right) + 1 = 0\) là
A.3
B.5
C.6
D.4
C
Đáp án C.
Từ đồ thị hàm số \(y = f\left( x \right)\) ta có
\(f\left( {f\left( x \right)} \right) + 1 = 0 \Leftrightarrow f\left( {f\left( x \right)} \right) = - 1 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = {x_1} \in \left( { - 1;0} \right){\rm{ }}\left( 1 \right)\\f\left( x \right) = {x_2} = 1{\rm{ }}\left( 2 \right)\\f\left( x \right) = {x_3} \in \left( {2;3} \right){\rm{ }}\left( 3 \right)\end{array} \right.\)
+ Phương trình \(f\left( x \right) = {x_1}\) với \({x_1} \in \left( { - 1;0} \right)\) có đúng 2 nghiệm.
+ Phương trình \(f\left( x \right) = {x_2} = 1\) có đúng 2 nghiệm.
+ Phương trình \(f\left( x \right) = {x_3}\) với \({x_3} \in \left( {2;3} \right)\) có đúng 2 nghiệm.
Mặt khác các nghiệm của 3 phương trình \(\left( 1 \right),\left( 2 \right),\left( 3 \right)\) không trùng nhau.
Vậy phương trình \(f\left( {f\left( x \right)} \right) = 1\) có 6 nghiệm thực.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247