Cho bất phương trình

Câu hỏi :

Cho bất phương trình \[{x^2} - 8x + 7 \ge 0\]. Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

A.\[\left( { - \infty ;0} \right].\]

B. \[\left[ {8; + \infty } \right).\]

C. \[\left( { - \infty ;1} \right].\]

D. \[\left[ {6; + \infty } \right).\]

* Đáp án

* Hướng dẫn giải

Ta có \[f(x) = {x^2} - 8x + 7 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 7}\end{array}} \right.\]Bảng xét dấu

Cho bất phương trình \[{x^2} - 8x + 7 \ge 0\]. Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.Ta có \[f(x) = {x^2} - 8x + 7 = 0 \Leftrightarrow \ (ảnh 1)

Dựa vào bảng xét dấu\[f(x) \ge 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 1}\\{x \ge 7}\end{array}} \right.\]

Tập nghiệm của bất phương trình là \[S = \left( { - \infty ;1} \right] \cup \,\left[ {7; + \infty } \right)\]

Vì\[\frac{{13}}{2} \in \left[ {6; + \infty } \right)\]và \[\frac{{13}}{2} \notin S\]nên\[\left[ {6; + \infty } \right)\]thỏa yêu cầu bài toán.

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình !!

Số câu hỏi: 41

Copyright © 2021 HOCTAP247