Tập nghiệm của bất phương trình

Câu hỏi :

Tập nghiệm của bất phương trình \[\left( {\sqrt {2x + 4} - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1} + \sqrt {x + 4} } \right) \le x + 3\] là tập con của tập hợp nào sau đây?

A.\[\left( { - \frac{2}{3};\frac{1}{2}} \right)\]

B. \[\left( { - 1;0} \right)\]

C. \[\left( { - \frac{1}{3};\frac{2}{3}} \right)\]

D. \[\left( {0;1} \right)\]

* Đáp án

* Hướng dẫn giải

ĐKXĐ:\[x \ge - \frac{1}{2}\]

\[(\sqrt {2x + 4} - \sqrt {x + 1} )(\sqrt {2x + 1} + \sqrt {x + 4} ) \le x + 3\]

\[ \Leftrightarrow (\sqrt {2x + 4} - \sqrt {x + 1} )(\sqrt {2x + 4} + \sqrt {x + 1} )(\sqrt {2x + 1} + \sqrt {x + 4} ) \le (x + 3)(\sqrt {2x + 4} + \sqrt {x + 1} )\]\[ \Leftrightarrow (x + 3)(\sqrt {2x + 1} + \sqrt {x + 4} ) \le (x + 3)(\sqrt {2x + 4} + \sqrt {x + 1} )\]

\[ \Leftrightarrow (x + 3)(\sqrt {2x + 1} + \sqrt {x + 4} - \sqrt {2x + 4} - \sqrt {x + 1} ) \le 0\]

\[ \Leftrightarrow \sqrt {2x + 1} + \sqrt {x + 4} - \sqrt {2x + 4} - \sqrt {x + 1} \le 0\] (do x + 3 >0\[\forall x \ge - \frac{1}{2}\])

\[ \Leftrightarrow \sqrt {2x + 1} + \sqrt {x + 4} \le \sqrt {2x + 4} + \sqrt {x + 1} \]

\[ \Leftrightarrow 3x + 5 + 2\sqrt {(2x + 1)(x + 4)} \le 3x + 5 + 2\sqrt {(2x + 4)(x + 1)} \]

\[ \Leftrightarrow (2x + 1)(x + 4) \le (2x + 4)(x + 1)\]

\[ \Leftrightarrow 2{x^2} + 9x + 4 \le 2{x^2} + 6x + 4\]

\[ \Leftrightarrow 3x \le 0 \Leftrightarrow x \le 0\]

Kết hợp ĐKXĐ\[ \Rightarrow x \in \left[ { - \frac{1}{2};0} \right] \subset \left( { - \frac{2}{3};\frac{1}{2}} \right)\]Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình !!

Số câu hỏi: 41

Copyright © 2021 HOCTAP247