Trang chủ Đề thi & kiểm tra Khác Bất phương trình !! Tích của nghiệm nguyên âm lớn nhất và nghiệm nguyên...

Tích của nghiệm nguyên âm lớn nhất và nghiệm nguyên dương nhỏ nhất của bất phương trình

Câu hỏi :

Tích của nghiệm nguyên âm lớn nhất và nghiệm nguyên dương nhỏ nhất của bất phương trình \[\left( {3x - 6} \right)\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right) >0\] là

A.−9.

B.−6.

C.−4.

D.8.

* Đáp án

* Hướng dẫn giải

Bất phương trình

\[\left( {3x - 6} \right)\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right) >0 \Leftrightarrow 3{\left( {x - 2} \right)^2}\left( {x + 2} \right)\left( {x - 1} \right) >0\]

Vì \[{\left( {x - 2} \right)^2} >0,\,\,\forall x \ne 2\]  nên bất phương trình trở thành\(\left\{ {\begin{array}{*{20}{c}}{x \ne 2}\\{(x + 2)(x - 1) >0}\end{array}} \right.\)

Đặt \[f\left( x \right) = \left( {x + 2} \right)\left( {x - 1} \right).\]

Phương trình \[x + 2 = 0 \Leftrightarrow x = - \,2\] và\[x - 1 = 0 \Leftrightarrow x = 1.\]

Ta có bảng xét dấu

 Tích của nghiệm nguyên âm lớn nhất và nghiệm nguyên dương nhỏ nhất của bất phương trình (ảnh 1)

Dựa vào bảng xét dấu, ta thấy rằng \[f\left( x \right) >0 \Leftrightarrow x \in \left( { - \,\infty ; - \,2} \right) \cup \left( {1; + \,\infty } \right).\]

Kết hợp với điều kiện \[x \ne 2,\]  ta được\[ \Leftrightarrow x \in \left( { - \,\infty ; - \,2} \right) \cup \left( {1;2} \right) \cup \left( {2; + \,\infty } \right).\]Do đó, nghiệm nguyên âm lớn nhất của bất phương trình là −3 và nghiệm nguyên dương nhỏ nhất của bất phương trình là 3.

Vậy tích cần tính là (−3).3=−9.

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình !!

Số câu hỏi: 41

Copyright © 2021 HOCTAP247