A.−9.
B.−6.
C.−4.
D.8.
Bất phương trình
\[\left( {3x - 6} \right)\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right) >0 \Leftrightarrow 3{\left( {x - 2} \right)^2}\left( {x + 2} \right)\left( {x - 1} \right) >0\]
Vì \[{\left( {x - 2} \right)^2} >0,\,\,\forall x \ne 2\] nên bất phương trình trở thành\(\left\{ {\begin{array}{*{20}{c}}{x \ne 2}\\{(x + 2)(x - 1) >0}\end{array}} \right.\)
Đặt \[f\left( x \right) = \left( {x + 2} \right)\left( {x - 1} \right).\]
Phương trình \[x + 2 = 0 \Leftrightarrow x = - \,2\] và\[x - 1 = 0 \Leftrightarrow x = 1.\]
Ta có bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng \[f\left( x \right) >0 \Leftrightarrow x \in \left( { - \,\infty ; - \,2} \right) \cup \left( {1; + \,\infty } \right).\]
Kết hợp với điều kiện \[x \ne 2,\] ta được\[ \Leftrightarrow x \in \left( { - \,\infty ; - \,2} \right) \cup \left( {1;2} \right) \cup \left( {2; + \,\infty } \right).\]Do đó, nghiệm nguyên âm lớn nhất của bất phương trình là −3 và nghiệm nguyên dương nhỏ nhất của bất phương trình là 3.
Vậy tích cần tính là (−3).3=−9.
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247