A.\[S = \left( { - \infty ; - 2} \right) \cup \left( { - 1;2} \right).\]
B. \[S = \left( { - 2; - 1} \right] \cup \left( {2; + \infty } \right).\]
C. \[S = \left[ { - 2; - 1} \right) \cup \left( {2; + \infty } \right)\]
D. \[S = \left[ { - 2; - 1} \right] \cup \left[ {2; + \infty } \right).\]
Bất phương trình
\[\frac{{{x^2} + x - 3}}{{{x^2} - 4}} \ge 1 \Leftrightarrow \frac{{{x^2} + x - 3}}{{{x^2} - 4}} - 1 \ge 0 \Leftrightarrow \frac{{x + 1}}{{\left( {x - 2} \right)\left( {x + 2} \right)}} \ge 0.\]
Đặt \[f\left( x \right) = \frac{{x + 1}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}.\]Ta có\[x + 1 = 0 \Leftrightarrow x = - \,1\]và
\[(x - 2)(x + 2) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 2}\end{array}} \right.\]
Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng \[f(x) \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 2 < x \le - 1}\\{x >2}\end{array}} \right.\]Vậy tập nghiệm của bất phương trình là\[S = \left( { - \,2; - \,1} \right] \cup \left( {2; + \,\infty } \right).\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247