A.x = 2.
B.x = 1.
C.x = −2.
D.x = −1.
Bất phương trình tương đương với
\[\frac{{x\left( {x + 4} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} - \frac{{2x\left( {x - 3} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} < - \frac{{4x\left( {x + 3} \right)}}{{x\left( {x - 3} \right)\left( {x + 3} \right)}} \Leftrightarrow \frac{{3x + 22}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} < 0.\]
Đặt \[f\left( x \right) = \frac{{3x + 22}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}.\]
Ta có \[3x + 22 = 0 \Leftrightarrow x = - \frac{{22}}{3};\left\{ {\begin{array}{*{20}{c}}{x - 3 = 0 \Leftrightarrow x = 3}\\{x + 3 = 0 \Leftrightarrow x = - 3}\end{array}} \right.\]
Bảng xét dấu
Dựa vào bảng xét dấu, ta thấy rằng\[f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \,\infty ; - \frac{{22}}{3}} \right) \cup \left( { - \,3;3} \right).\]
Vậy nghiệm nguyên lớn nhất thỏa mãn bất phương trình là x = 2.
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247