Tập nghiệm của bất phương trình

Câu hỏi :

Tập nghiệm của bất phương trình \[\left| {5x - 4} \right| \ge 6\]có dạng \[S = ( - \infty ;a] \cup [b; + \infty ).\;\] Tính tổng \[P = 5a + b.\].

A.1.

B.2.

C.0.

D.3.

* Đáp án

* Hướng dẫn giải

Bất phương trình

\[|5x - 4| \ge 6 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5x - 4 \ge 6}\\{5x - 4 \le - 6}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{5x \ge 10}\\{5x \le - 2}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \ge 2}\\{x \le - \frac{2}{5}}\end{array}} \right.\]

Do đó, tập nghiệm của bất phương trình là \[S = \left( { - \,\infty ; - \frac{2}{5}} \right] \cup \left[ {2; + \,\infty } \right).\]

Mà\[S = \left( { - \,\infty ;a} \right] \cup \left[ {b; + \,\infty } \right)\]  nên\(\left\{ {\begin{array}{*{20}{c}}{a = - \frac{2}{5}}\\{b = 2}\end{array}} \right.\)

Vậy \[P = 5a + b = 5.\left( { - \frac{2}{5}} \right) + 2 = 0\]Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bất phương trình !!

Số câu hỏi: 41

Copyright © 2021 HOCTAP247