A.2016.
B.2017.
C.4032.
D.4034.
TH1. Với \[2x + 1 \ge 0 \Leftrightarrow x \ge - \frac{1}{2},\]khi đó\[\left| {2x + 1} \right| < 3x \Leftrightarrow 2x + 1 < 3x \Leftrightarrow x >1.\]</>
Kết hợp với điều kiện \[x \ge - \frac{1}{2}\]suy ra \[{S_1} = \left( {1; + \,\infty } \right).\]
TH2. Với\[2x + 1 < 0 \Leftrightarrow x < - \frac{1}{2},\]khi đó\[\left| {2x + 1} \right| < 3x \Leftrightarrow - \,2x - 1 < 3x \Leftrightarrow x >- \frac{1}{5}.\]</>
Kết hợp với điều kiện \[x < - \frac{1}{2}\]suy ra \[{S_2} = \emptyset .\]
Suy ra tập nghiệm của bất phương trình là \[S = {S_1} \cup {S_2} = \left( {1; + \,\infty } \right).\]
Mà \[x \in \left[ { - 2017;2017} \right]\]nên\[x \in \left( {1;2017} \right]\]hay\[x \in \left\{ {2;3;...;2017} \right\}\]
Vậy có 2016 giá trị nguyên của x thỏa mãn.
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247