Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;7)

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;7), B57;107;137. Gọi (S') là mặt cầu tâm I đi qua hai điểm A, B sao cho OI nhỏ nhất. M(a,b,c) là điểm thuộc (S'), giá trị lớn nhất của biểu thức T=2a-b+2c là

A. 18

B. 7

C. 156

D. 6

* Đáp án

A

* Hướng dẫn giải

Chọn A

Tâm I mặt cầu (S') đi qua hai điểm A, B nằm trên mặt phẳng trung trực của . Phương trình mặt phẳng trung trực của AB là (P): x+2y+3z-14=0.

OInhỏ nhất khi và chỉ khi I là hình chiếu vuông góc của O trên mặt phẳng (P).

Đường thẳng d qua O và vuông góc với mặt phẳng (P) có phương trình x=ty=2tz=3t.

Tọa độ điểm I khi đó ứng với t là nghiệm phương trình

t+2.2t+3.3t14=0t=1I1;2;3.

Bán kính mặt cầu (S') là R=IA=4.

Từ T = 2a-b+2c => 2a-b+2c-T, suy ra M thuộc mặt phẳng (Q): 2x-y+2z-T=0.

Vì M thuộc mặt cầu nên:

dI;QR2.12+2.3T22+12+2246T126T18.

Copyright © 2021 HOCTAP247