Cho số phức z thỏa mãn z-4=(1+i)|z|-(4+3z)i . Môđun của z bằng

Câu hỏi :

Cho số phức z  thỏa mãn \[z - 4 = \left( {1 + i} \right)\left| z \right| - \left( {4 + 3z} \right)i\]. Môđun của z bằng

A. \[\frac{1}{2}\]       

B. 2                           

C. 4                           

D. 1

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Giả sử \[z = a + bi\left( {a,b \in \mathbb{R}} \right)\]

Ta có \[z - 4 = \left( {1 + i} \right)\left| z \right| - \left( {4 + 3z} \right)i \Leftrightarrow \left( {1 + 3i} \right)z = \left| z \right| + 4 + \left( {\left| z \right| - 4} \right)i\]

\[ \Rightarrow \left| {\left( {1 + 3i} \right)z} \right| = \left| {\left| z \right| + 4 + \left( {\left| z \right| - 4} \right)i} \right| \Leftrightarrow \sqrt {10} \left| z \right| = \sqrt {{{\left( {\left| z \right| + 4} \right)}^2} + {{\left( {\left| z \right| - 4} \right)}^2}} \]

\[ \Leftrightarrow 10{\left| z \right|^2} = 2{\left| z \right|^2} + 32 \Leftrightarrow \left| z \right| = 2\]. Chọn B.

Copyright © 2021 HOCTAP247