Gọi S là tập hợp tất cả các số tự nhiên có dạng abcdef , trong đó a,b,c,d,e,f

Câu hỏi :

Gọi S là tập hợp tất cả các số tự nhiên có dạng \[\overline {abcdef} \], trong đó \[a,b,c,d,e,f\] đôi một khác nhau và thuộc tập \[T = \left\{ {0;1;2;3;4;5;6} \right\}\]. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn thỏa mãn \[a + b = c + d = e + f\]

A. \[\frac{4}{{135}}\] 

B. \[\frac{5}{{158}}\] 

C. \[\frac{4}{{85}}\]  

D. \[\frac{3}{{20}}\]

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Có tất cả \[6.6.5.4.3.2 = 4320\] số tự nhiên có 6 chữ số đôi một khác nhau được lập từ T.

Số lập được thỏa mãn \[a + b = c + d = e + f\], ta xét các trường hợp sau:

+ TH1. Xét các cặp \[\left\{ {0;6} \right\},\left\{ {1;5} \right\},\left\{ {2;4} \right\}\]

Nếu \[\left\{ {a;b} \right\} = \left\{ {0;6} \right\}\] thì có 1 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nếu \[\left\{ {a;b} \right\} = \left\{ {1;5} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nếu \[\left\{ {a;b} \right\} = \left\{ {2;4} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nên có tất cả \[1.8 + 2.8 + 2.8 = 40\] số thỏa mãn.

+ TH2. Xét các cặp \[\left\{ {0;5} \right\},\left\{ {1;4} \right\},\left\{ {2;3} \right\}\] tương tự TH1 có 40 số thỏa mãn.

+ TH3. Xét các cặp \[\left\{ {1;6} \right\},\left\{ {2;5} \right\},\left\{ {3;4} \right\}\]

Nếu \[\left\{ {a;b} \right\} = \left\{ {1;6} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nếu \[\left\{ {a;b} \right\} = \left\{ {2;5} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nếu \[\left\{ {a;b} \right\} = \left\{ {3;5} \right\}\] thì có 2 cách chọn, khi đó hai cặp số còn lại có \[2.2.2 = 8\] cách chọn.

Nên có tất cả \[2.8 + 2.8 + 2.8 = 48\] số thỏa mãn.

Vậy xác suất cần tìm là \[\frac{{40 + 40 + 48}}{{4320}} = \frac{4}{{135}}\]. Chọn A.

Copyright © 2021 HOCTAP247