B
Đáp án B
Giả sử \[z = x + yi\left( {x,y \in \mathbb{R}} \right)\]
Ta có \[\left| {z - 2m + 1 - i} \right| = 10\]
\[ \Leftrightarrow \left| {x - 2m + 1 + \left( {y - 1} \right)i} \right| = 10 \Leftrightarrow {\left( {x - 2m + 1} \right)^2} + {\left( {y - 1} \right)^2} = 100\]
Tập hợp các điểm biểu diễn số phưc z là đường tròn \[\left( C \right)\] có tâm \[I\left( {2m - 1;1} \right)\] và bán kính \[R = 10\].
Lại có
\[ \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {x - 2} \right)^2} + {\left( {3 - y} \right)^2} \Leftrightarrow 2 - 2x + 2y = 13 - 4x - 6y \Leftrightarrow 2x + 8y - 11 = 0\]
Tập hợp các điểm biểu diễn số phức z là đường thẳng \[\Delta :2x + 8y - 11 = 0\]
Để có đúng hai số phức z thỏa mãn bài toán thì \[\Delta \] phải cắt \[\left( C \right)\] tại 2 điểm phân biệt
Mà \[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 19; - 18; - 17;...;0;1;2;...;21} \right\}\]. Chọn B.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247