Giá trị của tham số m để phương trình 4^x-(2m+3)*2^x+64=0 có hai nghiệm thực

Câu hỏi :

Giá trị của tham số m để phương trình \({4^x} - \left( {2m + 3} \right){2^x} + 64 = 0\) có hai nghiệm thực \({x_1},{x_2}\) thỏa mãn \(\left( {{x_1} + 2} \right)\left( {{x_2} + 2} \right) = 24\) thuộc khoảng nào sau đây?

A. \(\left( {0;\frac{3}{2}} \right)\)                

B. \(\left( { - \frac{3}{2};0} \right)\)          

C. \(\left( {\frac{{21}}{2};\frac{{29}}{2}} \right)\)                               

D. \(\left( {\frac{{11}}{2};\frac{{19}}{2}} \right)\)

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Đặt \({2^x} = t > 0\). Theo hệ thức Vi-ét ta có \({2^{{x_1}}}{.2^{{x_2}}} = 64 \Rightarrow {2^{{x_1} + {x_2}}} = {2^6} \Rightarrow {x_1} + {x_2} = 6\).

Giả thiết tương đương \({x_1}{x_2} + 2\left( {{x_1} + {x_2}} \right) = 20 \Rightarrow {x_1}{x_2} = 8 \Rightarrow \left\{ \begin{array}{l}{x_1} + {x_2} = 6\\{x_1}{x_2} = 2\end{array} \right. \Rightarrow \left( {{x_1};{x_2}} \right) = \left( {2;4} \right),\left( {4;2} \right)\).

\( \Rightarrow \left( {{t_1};{t_2}} \right) = \left( {4;16} \right),\left( {16;4} \right) \Rightarrow {t_1} + {t_2} = 20 \Rightarrow 2m + 3 = 20 \Rightarrow m = 8,5\)

Ta chỉ có \({2^{{x_1}}}{.2^{{x_2}}} = {2^{{x_1} + {x_2}}}\), vì thế nếu quy các mũ này theo tích \({x_1},{x_2}\) là không thể, biểu thị theo logarit cũng không ổn. Khi đó hãy nhớ đến hệ phương trình ẩn \({x_1},{x_2}\) như trên.

Copyright © 2021 HOCTAP247