Câu hỏi :
Trong không gian Oxyz cho hai đường thẳng \({d_1}:\frac{{x - 3}}{{ - 1}} = \frac{{y - 3}}{{ - 2}} = \frac{{z + 2}}{1}\), \({d_2}:\frac{{x - 5}}{{ - 3}} = \frac{{y + 1}}{2} = \frac{{z - 2}}{1}\) và mặt phẳng \(\left( P \right):x + 2y + 3{\rm{z}} - 5 = 0\). Đường thẳng vuông góc với \(\left( P \right)\) cắt \({d_1}\) và \({d_2}\) có phương trình là
* Đáp án
* Hướng dẫn giải
Đáp án A
Giả sử đường thẳng d cắt \({d_1},{d_2}\) lần lượt tại M, N \( \Rightarrow M\left( {3 - {t_1};3 - 2{t_1}; - 2 + {t_1}} \right),{\rm{ N}}\left( {5 - 3{t_2}; - 1 + 2{t_2};2 + {t_2}} \right)\).
Ta có
Mà d vuông góc với \(\left( P \right)\) nên
Ta có