Trong không gian Oxyz, cho các điểm A(1;2;3), B(2;1;0), C(4;3;-2)

Câu hỏi :

Trong không gian Oxyz, cho các điểm \[A\left( {1;2;3} \right),B\left( {2;1;0} \right),C\left( {4;3; - 2} \right),D\left( {3;4;1} \right)\]\[E\left( {1;1; - 1} \right)\]. Có bao nhiêu mặt phẳng cách đều 5 điểm đã cho?

A. 1.                          

B. 4.                          

C. 5.                          

D. 2.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có AB=1;1;3,DC=1;1;3AB=DC

AD=2;2;2ABk.ADA,B,D không thẳng hàng.

Nên tứ giác ABCD là hình bình hành.

Ta có AB=1;1;3AD=2;4;2AB;AD=10;4;2

AE=0;1;4AB;AD.AE=120EABDEABCD

Ta có hình chóp E.ABCD với đáy ABCD là hình bình hành.

Trong không gian Oxyz, cho các điểm   A(1;2;3), B(2;1;0), C(4;3;-2) (ảnh 1)

Các mặt phẳng cách đều 5 điểm đã cho là:

+ Mặt phẳng qua 4 trung điểm của 4 cạnh bên EA, EB, EC, ED.

+ Mặt phẳng qua 4 trung điểm lần lượt của ED, EC, AD, BC.

+ Mặt phẳng qua 4 trung điểm lần lượt của EC, EB, DC, AB.

+ Mặt phẳng qua 4 trung điểm lần lượt của EA, EB, AD, BC.

+ Mặt phẳng qua 4 trung điểm lần lượt của EA, ED, AB, DC.

Copyright © 2021 HOCTAP247