Cho hàm số y=ax^4+bx^2+c (a,b,c thuộc R) có đồ thị như hình vẽ bên

Câu hỏi :

Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a,b,c \in \mathbb{R}} \right)\) có đồ thị như hình vẽ bên. Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y = f\left( x \right),y = 0,x = - 2\)\(x = 2\) (như hìnhh vẽ bên). Mệnh đề nào dưới đây là đúng


A. \(S = 2\int\limits_{ - 2}^{ - 1} {f\left( x \right)dx} + \int\limits_{ - 1}^1 {f\left( x \right)dx} .\)               


B. \(S = 2\int\limits_{ - 2}^{ - 1} {f\left( x \right)dx} - \int\limits_{ - 1}^1 {f\left( x \right)dx} .\)

C. \(S = - 2\int\limits_{ - 2}^{ - 1} {f\left( x \right)dx} - \int\limits_{ - 1}^1 {f\left( x \right)dx} .\)

D. \(S = - 2\int\limits_{ - 2}^{ - 1} {f\left( x \right)d} x + \int\limits_{ - 1}^1 {f\left( x \right)dx} .\)

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Ta có

\(S = \int\limits_{ - 2}^{ - 1} {\left| {f\left( x \right)} \right|dx} + \int\limits_{ - 1}^1 {\left| {f\left( x \right)} \right|} dx + \int\limits_1^2 {\left| {f\left( x \right)} \right|dx} = \int\limits_{ - 2}^{ - 1} { - f\left( x \right)} dx + \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^2 { - f\left( x \right)dx} \)

\(\int\limits_{ - 2}^{ - 1} {f\left( x \right)dx} = \int\limits_1^2 {f\left( x \right)dx} \Rightarrow S = - 2\int\limits_{ - 2}^{ - 1} {f\left( x \right)dx} + \int\limits_{ - 1}^1 {f\left( x \right)dx} .\)

Copyright © 2021 HOCTAP247