Cho f(x) mà hàm số y=f'(x) có bảng biến thiên như hình bên

Câu hỏi :

Cho \(f\left( x \right)\) mà hàm số \(y = f'\left( x \right)\) có bảng biến thiên như hình bên. Tất cả các giá trị của tham số m để bất phương trình \(m + {x^2} < f\left( x \right) + \frac{1}{3}{x^3}\) nghiệm đúng với mọi \(x \in \left( {0;3} \right)\)

A. \(m < f\left( 0 \right).\)                            

B. \(m \le f\left( 0 \right).\)     

C. \(m \le f\left( 3 \right).\)                      

D. \(m < f\left( 1 \right) - \frac{2}{3}.\)

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Ta có \(m < f\left( x \right) + \frac{1}{3}{x^3} - {x^2} = g\left( x \right),\forall x \in \left( {0;3} \right) \Rightarrow g'\left( x \right) = f'\left( x \right) + {x^2} - 2x.\)

Trên \(\left( {0;3} \right) \Rightarrow 1 < f'\left( x \right) \le 3 \Rightarrow f'\left( x \right) > 1 \Rightarrow g'\left( x \right) > 1 + {x^2} - 2x = {\left( {x - 1} \right)^2} \ge 0\)

\( \Rightarrow g\left( x \right)\) đồng biến trên \(\left( {0;3} \right) \Rightarrow g\left( x \right) \ge g\left( 0 \right) = f\left( 0 \right) \Rightarrow m \le f\left( 0 \right).\)

Copyright © 2021 HOCTAP247