Cho giới hạn I = lim x -> 0 e^3x − e^2x / x , chọn mệnh đề đúng:

Câu hỏi :

Cho giới hạn \[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x}\], chọn mệnh đề đúng:

A.\[{I^2} + 3I = 2\]

B. \[{I^3} + {I^2} - 2 = 0\]

C. \[\frac{{I - 1}}{{I + 1}} = 1\]

D. \[3I - 2 = 2{I^2}\]

* Đáp án

* Hướng dẫn giải

Ta có:\[I = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{3x}} - {e^{2x}}}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {{e^{3x}} - 1} \right) - \left( {{e^{2x}} - 1} \right)}}{x}\]

\[ = \mathop {\lim }\limits_{x \to 0} \left[ {3.\frac{{{e^{3x}} - 1}}{{3x}} - 2.\frac{{{e^{2x}} - 1}}{{2x}}} \right] = 3.1 - 2.1 = 1\]

Do đó, thay I=1 vào các đáp án ta được đáp án B.

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Hàm số mũ !!

Số câu hỏi: 28

Copyright © 2021 HOCTAP247