Trong không gian Oxyz cho vecto a(1;-1;0) và hai điểm A(-4;7;3), B(4;4;5)

Câu hỏi :

Trong không gian Oxyz cho \(\overrightarrow a = \left( {1; - 1;0} \right)\) và hai điểm \(A\left( { - 4;7;3} \right),B\left( {4;4;5} \right).\) Giả sử M, N là hai điểm thay đổi trong mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\overrightarrow {MN} \) cùng hướng với \(\overrightarrow a \)\(MN = 5\sqrt 2 .\) Giá trị lớn nhất của \(\left| {AM - BN} \right|\) bằng

A. \(\sqrt {17} .\)       

B. \(\sqrt {77} .\)        

C. \(7\sqrt 2 - 3.\)      

D. \(\sqrt {82} - 5.\)

* Đáp án

A

* Hướng dẫn giải

Đáp án A

\(\overrightarrow {MN} \) cùng hướng với \(\overrightarrow a \Rightarrow \overrightarrow {MN} = k\overrightarrow a ,\) lại có \(MN = 5\sqrt 2 \Rightarrow t = 5 \Rightarrow \overrightarrow {MN} = \left( {5; - 5;0} \right).\)

Điểm \(C\left( {m;n;p} \right)\) thỏa mãn \(\overrightarrow {AC} = \overrightarrow {MN} \Rightarrow C\left( {1;2;3} \right).\)

Hai điểm C, B nằm cùng phía so với mặt \(\left( {Oxy} \right)\) do đều có cao độ dương, và CB không song song với \(\left( {Oxy} \right)\) do cao độ khác nhau, CB cắt \(\left( {Oxy} \right)\) tại một điểm cố định.

Do \(AM = CN\) nên \(\left| {AM - BN} \right| = \left| {CN - BN} \right| \le CB\).

Dấu đẳng thức có khi N là giao điểm của đường thẳng CB\(\left( {Oxy} \right).\)

Kết luận \({\left| {AM - BN} \right|_{\max }} = BC = \sqrt {17} .\)

Copyright © 2021 HOCTAP247