Giá trị lớn nhất của hàm số y=x^4-4x^2+6 trên đoạn [-2;3] bằng

Câu hỏi :

Giá trị lớn nhất của hàm số \(y = {x^4} - 4{x^2} + 6\) trên đoạn \(\left[ { - 2;3} \right]\) bằng

A. 51.                        

B. 6.                          

C. 2.                          

D. 123.

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Hàm số đã cho đã xác định và liên tục trên \(\left[ { - 2;3} \right]\).

Ta có \(\left\{ \begin{array}{l}x \in \left( { - 2;3} \right)\\y' = 4{x^3} - 8x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \end{array} \right.\)

Tính \(y\left( { - 2} \right) = 6;{\rm{ }}y\left( 3 \right) = 51;{\rm{ }}y\left( {\sqrt 2 } \right) = 2;{\rm{ }}y\left( { - \sqrt 2 } \right) = 2 \Rightarrow {\max _{\left[ { - 2;3} \right]}}y = 51\).

Copyright © 2021 HOCTAP247