Trong không gian Oxyz, cho mặt phẳng (P): y-2z+1=0

Câu hỏi :

Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):y - 2z + 1 = 0\) và đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y - 2}}{{ - 1}} = \frac{z}{1}\). Mặt phẳng \(\left( Q \right):ax + by + cz - 7 = 0\) đi qua điểm \(A\left( {2;3; - 1} \right)\), đồng thời vuông góc với mặt phẳng \(\left( P \right)\) và song song với đường thẳng d. Tính \(a + b + c\).

A. 6.                        

B. 7.                          

C. 5.                          

D. 4.

* Đáp án

D

* Hướng dẫn giải

Đáp án D

Mặt phẳng \(\left( P \right)\) có một VTPT là \(\overrightarrow n = \left( {0;1; - 2} \right)\).

Đường thẳng d có một VTCP là \(\overrightarrow u = \left( {1; - 1;1} \right)\).

Ta có \[\left\{ \begin{array}{l}\left( Q \right) \bot \left( P \right)\\\left( Q \right)//d\end{array} \right. \Rightarrow \left( Q \right)\] sẽ nhận \(\left[ {\overrightarrow n ;\overrightarrow u } \right] = \left( { - 1; - 2; - 1} \right)\) là một VTPT

\( \Rightarrow \left( Q \right)\) nhận \(\overrightarrow {{n_Q}} = \left( {1;2;1} \right)\) là một VTPT.

Kết hợp với \(\left( Q \right)\) qua \(A\left( {2;3; - 1} \right) \Rightarrow \left( Q \right):1.\left( {x - 2} \right) + 2.\left( {y - 3} \right) + 1.\left( {z + 1} \right) = 0\)

\( \Rightarrow \left( Q \right):x + 2y + z - 7 = 0\).

Đường thẳng d qua \(M\left( {1;2;0} \right)\), rõ ràng \(m \notin \left( Q \right):x + 2y + z - 7 = 0\)

\( \Rightarrow \left( Q \right):x + 2y + z - 7 = 0\) thỏa mãn.

Copyright © 2021 HOCTAP247