Cho hàm số f(x) có f(3)=-25/3 và f'(x)=x/(căn bậc hai của (x+1)) -1

Câu hỏi :

Cho hàm số \(f\left( x \right)\)\(f\left( 3 \right) = - \frac{{25}}{3}\)\(f'\left( x \right) = \frac{x}{{\sqrt {x + 1} - 1}}\). Khi đó \(\int\limits_3^8 {f\left( x \right)dx} \) bằng

A. \(\frac{{68}}{5}\).                                 

B. \(\frac{{25}}{3}\). 

C. \(\frac{{13}}{{30}}\). 

D. 10.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có: \(f'\left( x \right) = \frac{x}{{\sqrt {x + 1} - 1}} = \frac{{x\left( {\sqrt {x + 1} + 1} \right)}}{{\left( {\sqrt {x + 1} - 1} \right)\left( {\sqrt {x + 1} + 1} \right)}} = \sqrt {x + 1} + 1\)

\[ \Rightarrow f\left( x \right) = \int {\left( {\sqrt {x + 1} + 1} \right)dx} = \frac{2}{3}\sqrt {{{\left( {x + 1} \right)}^3}} + x + C\]

Do \[f\left( 3 \right) = - \frac{{25}}{3} \Rightarrow \frac{2}{3}\left( {\sqrt {{{\left( {3 + 1} \right)}^3}} } \right) + 3 + C = - \frac{{25}}{3} \Leftrightarrow C = - \frac{{50}}{3}\].

Từ đó: \[f\left( x \right) = \frac{2}{3}\sqrt {{{\left( {x + 1} \right)}^3}} + x - \frac{{50}}{3}\]

\[ \Rightarrow \int\limits_8^8 {f\left( x \right)dx} = \int\limits_3^8 {\left[ {\frac{2}{3}\sqrt {{{\left( {x + 1} \right)}^3}} + x - \frac{{50}}{3}} \right]dx} = \left. {\left( {\frac{4}{{15}}\sqrt[3]{{{{\left( {x + 1} \right)}^5}}} + \frac{{{x^2}}}{2} - \frac{{50}}{3}} \right)} \right|_3^8 = \frac{{13}}{{30}}\].

Vậy \[\int\limits_3^8 {f\left( x \right)dx} = \frac{{13}}{{30}}\].

Copyright © 2021 HOCTAP247