A
Đáp án A
Ta có: \(PT \Leftrightarrow - {\log _2}\left( {m - 4x} \right) + {\log _2}{\left( {x + 2} \right)^2} = 0 \Leftrightarrow {\log _2}{\left( {x + 2} \right)^2} = {\log _2}\left( {m - 4x} \right)\)
\( \Leftrightarrow m = {x^2} + 8x + 4{\rm{ }}\left( {x \in \left[ {2;5} \right]} \right)\). Xét hàm số \(f\left( x \right) = {x^2} + 8x + 4\) trên đoạn \(\left[ {2;5} \right]\).
Ta có \(f'\left( x \right) = 2x + 8 > 0{\rm{ }}\left( {\forall x \in \left[ {2;5} \right]} \right)\). Mặt khác \(f\left( 2 \right) = 24;{\rm{ }}f\left( 5 \right) = 69\).
Vậy với \(m \in \left[ {20;69} \right]\) thì PT đã cho có nghiệm trên đoạn \(\left[ {2;5} \right]\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247